Biomass to Energy Conversion Technologies

Dr Roger Ruan

Chief Technologist Resynergi Inc, Rohnert Park

Professor and Director

Center for Biorefining and Bioproducts and Biosystems Engineering Department University of Minnesota

Resynergi Introduction Mission: Collaborate to Free the World of Plastic Waste

Resynergi utilizes University of Minnesota and Sonoma County Combined Technologies

All kinds of solid wastes available

Wastes to Renewable Energy Pathways

	Technologies	Products
Plant-Derived Biomass (high in carbohydrates)	Hydrolysis/ Fermentation	Alcohols (methanol, ethanol, butanol)Off-gas (CO2, CO, H2)
	Anaerobic Diges	•Bio-gas (CH4, CO ₂ , H ₂ S, NH ₃) •Activated Sludge
Animal-Derived	Hydrothermal Liquefaction	 Bio-oil (highly oxygentated) Syn-gas (CO, CO₂, H₂) and Biochar
Biomass (high in proteins and oil)	Pyrolysis (>400	•Bio-oil (highly oxygentated) •Syn-gas (CO, CO ₂ , H ₂) and Biochar
Waste plastics	Gasification (>70	•Syn-gas (CO, CO ₂ , H ₂) •Corrosive ash (Cl, K, etc.)
	Combustion (>2,000°C)	Heat (BTUs)Electricity production

Environmental Impacts of Various Waste to Renewable Energy Pathways

Technologies	Environmental and Economic Impacts and Considerations	
Hydrolysis/ Fermentation	 Food vs. Fuel (land sharing) High capital cost for equipment Large process footprint 	 Requires high purity substrate (carbs) Operates 24/7
Anaerobic Digestion	 Waste remediation High capital cost for equipment Large process footprint 	 Biological uncertainty (Batch shutdown) Operates 24/7
Hydrothermal Liquefaction	Waste remediationVery high capital costSmall process footprint	• Residual carbohydrate stream, high energy input
Pyrolysis (>450°C)	 Produces bio-oil, bio-char and energy Medium capital cost Small process footprint 	• Performs waste remediation and specialty chemical synthesis
Gasification (>700°C)	Waste remediation to electricityMedium capital costSmall process footprint	Produces inert ash as byproductRequires electricity generator to produce electricity
Combustion (>2,000°C)	 Waste remediation to energy (BTU) Lowest capital cost Small process footprint 	Produces inert ash as byproductCombustion gas requires cleaning

Thermochemical Conversion Technologies

- More specifically: torrefaction, combustion, pyrolysis and gasification
- Principal purpose: to completely convert biomass polymers for fuels, energy, chemicals, and materials production

Pyrolysis

Schematic of the pyrolysis process, centralized and decentralized logistic schemes, and proposed oil applications.

[Kersten, et al., 2013, Curr. Opin. Biotechnol.]

Fluidized-bed Pyrolysis Technologies

Current Issues:

- Complicated system with high capital cost, therefore has to be large scale to be economical
- High feedstock shipping and storage cost

Mobile Pyrolysis Reactors

Intermediate Pyrolysis Reactors

Black is Green Pty Ltd http://www.biochar.com.au/about.html Amaron rotary drum reactor (Coates Engineering) http://www.coatesengineering. Vacuum Pyrolysis Reactor (Pyrovac)

<u>com</u>

Comprehensive Methodology to Design Pyrolysis Reactors? Could we increase bio-oil yields?

Mobile Pyrolysis Reactors

Intermediate Pyrolysis Reactors

(http://www.internationaltechcorp.o rg/IT-info.htm)

eGenesis CR-2 pyrolysis unit (http://www.egenindustries.com)

Advantages of MAP

- Microwave heating is more uniform, efficient and easy to control;
- The conversion products (pyrolytic gas and bio-oils) are cleaner than those from gasification and conventional
 pyrolysis because there is no need for fluidization;
- The syngas produced has higher heating value since it is not diluted by the carrying gas for fluidizing the materials;
- Microwave heating is a mature, and relatively more energy efficient, low cost technology; and
- Simple, scalable, portable, can be mobile for distributed conversion of solid wastes

Pyrolysis front development with conventional heating Pyrolysis front development with microwave heating

Comparison of the conventional heating and microwave heating [Zhang, et al., 2017, in: Pyrolysis.]

Mobile Downdraft Two-Step Catalytic Fast Microwave Assisted Biomass Pyrolysis/Gasification System

Acknowledgments:

Related Group Members and Collaborators: B. Polta, J. Willett, A. Sealock, R. Hemmingsen, P. Chen, M. Min, W. Zhou, M. Mohr, Y. Chen, L. Wang, K. Cobb, Yecong Li, Bing Hu, Q. Kong, X. Wang, Y. Wan, K. Hennessy, Y. Liu, X. Lin, Y. Wang, L. Fan, D. Duan, E. Anderson, Yun Li, Y. Cheng, S. Deng, Q. Chen, C. Wang, Y. Wang, Z. Du, X. Lu, Z. Wang, R. Griffith, J. Thissen, Q. Xie, Y. Nie, F. Borge, F. Hussain, M. Omar, Y. Zhang, S. Liu, N. Zhou, P. Peng, A. He, Y. Jiang, Y. Sun, Z. Fu, R. Zhu, A. Olson, B. Hu, B. Zhang, C. Chen, J. Zhu, L. Schmidt, D. Kittelson, R. Morey, D. Tiffany, L. Baker, G. Shurson, P. Urriola, F. Yu, H. Lei, X. Ye, M. Muthukumarappan, P. Heyerdahl,

Funding Agencies:

MnDRIVE - Minnesota's Discovery, Research and InnoVation Economy

Thank you!

Questions?

R. Roger Ruan, Ph.D.

Professor and Director Center for Biorefining Department of Bioproducts and Biosystems Engineering University of Minnesota

1390 Eckles Ave., St. Paul, MN 55108, USA <u>ruanx001@umn.edu</u>, 612-625-1710 Biorefining.cfans.umn.edu